毕竟又不是建造超级计算机,凭借着五纳米的制程,再把ar7核心稍微优化一下,处理器的核心频率提升到4到5g还是没问题的,毕竟设计芯片的时候,很多时候都要迁就加工基材还有加工方式,电路设计完全无法做到最优。
基地的加工方式根本与传统的离子刻蚀,光刻加工的工艺截然不同,它完全是一个原子一个原子慢慢堆积起来的,很自然地就可以选择最佳的角度进行加工,而且这种加工不再像光刻机刻画晶片那样,虽然也有着若干的叠层,总体来说还是属于平面类型的。
而基地优化过以后的结构,却很自然地就变成了一个球形,毕竟只有这样的结构,才是连接线路最短,晶体管之间距离最近的方式。
而且经过这么一改进,几万个晶体管组成的ar7处理器芯片,变成了直径连一厘米都不到球体,几乎没有任何没有用处的地方,频率在标准电压下,直接飙升到6g,处理能力强了好几倍,而耗电还不足一瓦。
当然具体的计算能力如何,方文也没有关注,想来这么高的频率,足以应付光缆放大,还有普通的电话语音处理了,连负责数据传输的骨干路由器都能兼顾一把。
不过基地已经建立了通讯基站,短时间内还用不到光纤通信,原来依托光缆网络建立起来的几条监控线路,随着通讯基站的建立,已经处于了废弃的状态。
而这些东西给张诚他们研究正好,经过几天的治疗,张诚院士已经与今天中午胜利复原,投入到了紧张的研究活动之中。
虽然他手下的研究人员学历都高得吓人,四个人中,只有一个是硕士研究生,其他三个都是博士,不过终究没有像方文这样经过大脑的开发,和大量知识的直接灌输,他们只能苦逼地继续看书,自学那些只是稍微了解的集成电路知识,灵儿每天为他们传输一次,总共才几个g的数据,还不能完全代替从书本上获取知识。
同样由于学历高,他们的目光显然不会放在比较低下的碳化硅之类的东西上,如石墨烯这样代表着未来的材料,才是他们的关注所在。
只不过石墨烯芯片,就算是在末世前,也是一件相当前沿的科技,制备方式,掺杂方法,都局限在顶级电子实验室中间,没有大规模工业化,所以他们所了解所有关于芯片的知识,完全集中在理工大学收录的eee期刊上面,而这里面直接涉及到专利制作方法的,肯定不会直接出现,要么只有原理,要么就写得十分模糊,想要依据这些公开发表的论文做出石墨烯芯片来,还需要极其艰苦的努力还有大量的实验才行。
随着末世爆发,电磁环境的改变,那些论文虽然说不上完全错误,但是依据这些个理论制作出来的石墨烯芯片,却是多半不能用的,不过随着张诚院士的加入,他们开始有了新的进展,至少可以制作出能够在暗能量环境中稳定运行超过一分钟的芯片了,要知道以往他们制作的芯片,超不过五秒,就会直接击穿烧毁。
暗能量环境改变的不只是电流,让它们极其不稳定,还削弱了晶体管之间的pn结,也只有碳化硅这样宽禁带的半导体材料尽管也受到影响,却不妨碍它的使用。
当然也只有方文这样不学无术,毫无历史包袱的人才会按照主脑给出的半导体材料的顺序来设计半导体,像是稍微有点志向的人谁还不是奔着那些看起来就高大上的材料去做的,比如石墨烯,还有更加高大上的硅烯,如现在的锂空气电池中广泛应用的正极材料就以硅烯为主,虽然都是硅元素,不过二维硅跟着寻常的硅晶圆有着截然不同的特性,充当处理器芯片的时候或许有着更好的性能。
不过方文的运气还是非常不错的,第一次的实验就成功找到了合适的半导体基材,并且成功制备出了处理器芯片,完全不像那几个盯着石墨烯的人,所以说科学研究终究是一个看脸的活动,欧皇和非酋有着天壤之别。
如果方文把他的注意力也集中到石墨烯上的话,说不定一次性就成功了也未可知。
当然电子工业中,除了处理器芯片,其他的独立元件也是必不可少,相当关键的,不过这些方文决定不再理会了,把这些直接丢给张诚他们的团队,反正这也是他们的专业,虽然他们研究的速度慢了一点,基地也不是急着应用不是。
而且碳化硅这样的半导体基材还有一些其他方面的用途,比如内存芯片,原本基于高制程的硅存储,始终做不到较高的频率还有较大的容量,如果换成了碳化硅的话,以它的特性,就能做出极高频率和带宽的内存芯片,从而极大地提升目前基地一些器件的性能。