蹲下来,用手指在地上计算:“首先,我们必须先等待第一道门打开,1分45秒第一道铁门打开之后,第二道1分10秒间隔期的门已经在我们等待的过程中打开过一次,而且当第一道门打开的时候,第二道门的第二轮倒计时已经过去了35秒的时间,也就是说我们必须再等待35秒的时间,第二道门才能打开。”
“在我们通过第二道门的时候,时间已经过去了2分20秒,剩下的三道门我们根本没办法在10秒之内通过。”
沈思易看着各道门下的倒计时,陷入沉思:“理论上来说你的算法是正确的,但是从警员锁上所有的门开始,门下的倒计时已经开始了。”
“到目前为止,第五道门已经打开过了4次,因为每道门的开门时间不同,随着开门次数的增加,每道门之间的开门间隔也会产生变化。”
“想要在2分30秒之内通过五道门……并不是没有可能。”
经过沈思易的提示,涂化也觉得这个看似无解的关卡似乎有了些头绪。单从第一道门和第二道门来看,当第一道门第一次开启之后,想要等到第二道门开启,需要再等待35秒的时间;而当第一道门开启第二次的时候,也就是在过了2个1分45秒,也就是3分30秒之后,第二道门会与第一道门同时开启。
也就是说在3分30秒的时间内,第一道门总共开启了2次,而第二道门总共开启了3次,第一道门第二次开启的时间与第二道门第三次开启的时间重合。他们如果想要在最短的时间内通过前两道门,只需要在进入监牢的3分30秒时,等两道门同时打开的时候,迅速通过第一道门和第二道门即可。
同样的道理,他们只需要找出五道门同时开启的时间,就可以想办法离开这个监牢。
沈思易的想法更明确一点:“这其实就是一道数学计算题。首先我们观察这几道门开合的时间,他们都是35的倍数。”
“假如我们以35秒为一个时间单位的话,第一道门开启的时间就是3个时间单位,第二道门为2个时间单位,剩下三道门分别为5、4、1个时间单位。”
“就先拿第一道门和第二道门来看,我们想要在最短的时间内通过这两扇门,需要等待的时间正巧是这两扇门开启时间的最小公倍数。也就是3和2的最小公倍数6,6个时间单位就是6x35秒=210秒=3分30秒。”沈思易分析道,“所以按照这个规律来分析,我们想要连续通过5道门,就需要等待3、2、5、4、1的最小公倍数,即60个时间单位。”
涂化计算了一下,60个时间单位就是60个35秒,也就是说他们想要通过这五道门,需要等待35分钟的时间,在35分钟之后,这五扇门会同时开启。但根据他们刚刚的观察,这五扇门之间还是存在一定的距离的,而且每扇门开启的时间非常短,几乎是一瞬间的事情,五扇门又会同时关闭。
所以他们即使计算出五道门同时开启的时间,似乎仍然找不到解决办法,因为他们根本无法在所有门同时开启的一瞬间迅速通过。
孙维也疑惑道:“我们根本没有办法在35分钟之后,也就是所有门同时开启的一瞬间通过五扇门。从第一扇门到第五扇门之间的距离至少有200米,就算用最快的速度跑过去,恐怕在过了两道门的时候就被困在中间了。”
涂化也陷入了迷惑中:“而且只要我们离开第一道门超过2分30秒的时间,就会触发警报声。而2分30秒钟最多包含4个时间单位,假如我们在等待了35分钟之后通过了2道门,接下来还需要2分55秒的时间,第三道门才会再次开启,警报声早就响起了。”