题。在陷阱里出现一道这样的题目,应该就是为了给观察能力强的挑战者逃生用的。只要涂化能答出第六行需要填的数字,他们应该就可以在这个陷阱中找到通路。
涂化看着这五排只由1和2组成的数列,第一行的数字是1,并且个数也是1;第二行的数字仍然是1,但个数却成双;如果按照个数递增的变换规律的话,第三行应该有三个数字才对,但第三行仍然只有2个数字,分别是2和1。
所以这五行数字一定不是数列中学到的常见规律。涂化把数列中的变换规律都套进去试了一下,甚至试着进行跳行加减计算,仍然无法得出明确的答案。
他隐约觉得这道题应该有什么猫腻,而且问题就出在每行数字的数量上。从第三行和第五行数字的数量来看,2个和6个是完全不符合常规规律的,一定有什么原因让它们的个数产生了这种跳跃式的变化,并且这种变化在第六行也就是他要填的那一行中,同样适用。
涂化一时间想不到答案,而头顶又传来脚步声,这让他有些慌神。
脚步声正是设置这个陷阱的陷阱师,因为陷阱师并没有太强的攻击力,他只能依靠陷阱将其他挑战者困住或毒死,所以这个陷阱师只是朝里面看了一眼,又从旁边拾了一些干草树枝过来,把陷阱的入口彻底封死了。
洞内一片黑暗。涂化什么也看不到,只有耳朵能听到地面上一些兮兮索索的响动和……苏格池的呼吸声。
“别怕。”黑暗能够将除了视觉之外的所有感官都逐渐放大,涂化甚至觉得苏格池好像就凑在他耳边说话似的,安抚声搔刮地他耳朵都有些发痒,“你仔细回忆刚刚的几个数字,等你想好了答案,眼睛也就基本适应这个光线了。”
涂化深吸一口气,脚下稍微往旁边挪了挪,和苏格池拉开一点距离,否则他的呼吸声都会扰的自己思绪飘忽。
第一行数字是1个1,第二行数字是2个1,第三行数字是1个2和1个1,第四行是1211,而第五行恰巧就是111221……
难道说他们的规律并不是数字的排列,而是……数字的个数?!
第55章
涂化脑袋里猛地闪过一道灵光,原来这道找规律的数字题和以往的题目一样,需要另辟蹊径。
第一行是一个数字【1】,第二行是【11】,第二行的这两个1其实并不是某种规律的延续,而是对第一行数字的描述。
第二行的这两个1,其中第一个1代表的是数量,第二个代表的是内容。
也就是说,第二行的【11】其实所代表的真正意义是在描述第一行的那个数字:1个1。
按照这种规律,第三行的数字【21】也就说的通了,这是在表示第二行的数字【11】是2个1。
那么第四行数字的【1211】则是按顺序描述第三行的两个数字:1个2和1个1,正巧就凑成了1211。
第五行则是在描述第四行的数字,1个1、1个2、2个1正好就凑成了【111221】。
所以他要填的第六行的数字应该描述第五行的内容,按照顺序应该是:3个1,2个2和1个1。
连起来写成数字就是【312211】。这些数字并不是某种即成的规律,而是对上一行数字的描述与统计。
陷阱内的光线依然很暗,但涂化的视力已经渐渐适应,他连忙从地上捡起一块石子,将附在墙上的青苔伸手拨开,在那五排数字的下面把答案写了上去。