笔趣阁

设置:
关灯 护眼
笔趣阁 > 去天外 > 第四十八章 穿墙老鼠

第四十八章 穿墙老鼠

王端猛地站起,碰得桌子一晃。

五十多岁的人了,眼神却骤然爆发出狂热。略停了停,饮下一杯烈酒之后才开口,声音冷淡。

“董公子真神人也!请说明,是怎么计算出来的。”

董小姐“嘻嘻”笑了,道:

“这算啥,我教他的。”

王端瞟了她一眼,不予理会。事实上,也根本没一个人相信。

正忙碌吃肉喝酒的少年依旧不转身,道:

“这有啥稀奇?我见了《九章算术》这题,就想过墙厚十尺、百尺、千尺该怎么穿?忙乎了整整一个月,一直推算到了万尺,当然知道啦。”

啧啧,算一个月?

众人一听,简直要晕倒。

也只有蠢人才肯办这种蠢事,瞎猫碰到了死耗子。这头一阵,周人没赢,华人也没输,勉强算平局。

王端眼眸里的神采渐渐消失了,咬咬牙,兀自不甘心,道:

“王某还有一题,请董公子仔细听好。三球半径为一,两两紧挨平放。上面摆一个同样大小的球。问,上球离地多高?”

题目一听,就让人脑壳变成一团浆糊,没事玩球球?

解题的关键之处在于,上球探入下面三球形成的凹陷有多深。岂止无法想象,计算起来也狗咬刺猬,不知该从哪里下口。

挟向蒸鹿尾的筷子停住了,信天游心里敲起了强烈警钟。

情况不对头。

这是一道万年前的奥林匹克竞赛题,普通高中生极难解出,即使大学生也未必解得出。必须运用空间解析几何,扭麻花一般画许多辅助线,造城堡一般建许多复杂模型。

他解类似的题才十岁,只花费了九秒,面临的难度更高。问在四个大球中间,可以塞入多大一个小球,或者半径为多少的若干颗小珠子?

信天游是用物理的眼光,来看待这道数学题的。

匀质对称物体的几何中心就是物理中心,球心就是质量中心。把四个大球看成一个整体,用杠杆原理飞快求出质心。它距离下面三个球心构成的平面是一,距离上面球心的距离是三。根据对称原理,小球的球心就是四个大球构成的锥体质心。到了这一步,再加上四面体公式,初中生都可以心算出答案。

不仅仅如此,他还经常用宏观的理论去解决微观问题,用微观的理论解释宇宙万象,让不相干的学科互证答案……

如计算复杂运动时,利用广义相对论中的“加速场与引力场等效“原理,把外力、加速、电磁、离心、引力等等的矢量箭头统统合并为一。

于是乎,万流归宗,一切都变简单了。

这些背道离经的方法,异想天开的思路,让信使沉默了整整三天三夜。

之后,霸道老师调整教学方向,从以身体训练的“百花杀”为主,调整为理论训练的“科学思维“为主。直到最后,硬逼着可怜巴巴的学生制造“时空之门“。

可信天游从山下所有的史料来看,大明中期之后的历史荡然无存,似乎被一只无形巨手撕掉了。

那段空白,恰恰是从科学萌芽的文艺复兴开始……

那么,王端从哪里得到了这道题?

-----------------------------------------------

这一章,稍微有点烧脑,是我少年的回忆。

我很怀念,那个十五岁自学《微积分》与《普通物理》,打球、练武、写诗……行走在暴雨里放歌,狂野又单纯的少年。

如果你遇到少年的我,请带他回家!

『加入书签,方便阅读』
热门推荐
归墟行之梦里阑珊今安在重生之爱我你就说出来望庭春农女福到重生之日本投资家不负穿越好时光全娱乐圈偶像宫中有猫